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Abstract

In this paper, we present a new approach to the design of
probabilistic classifiers. Rather than working with a com-
mon high-dimensional feature vector, the classifier is writ-
ten in terms of separate feature vectors chosen specifically
for each class and their low-dimensional PDFs. While suf-
ficiency is not a requirement, if the feature vectors are suffi-
cient to distinguish the corresponding class from a common
(null) hypothesis, the method is equivalent to the maximum
a posteriori probability (MAP) classifier. The method has
applications to speech, image, and general pattern recogni-
tion problems.

1 Problem Statement

Consider the problem of classifying a data sample x
into one of M classes. The optimal maximum a posteriori
(MAP) or Bayesian classifier is

M M
arg max p(H;|x) = arg max p(x|H;) p(H;). (1)

If the LFs, p(x|H;), are not known, it is necessary to es-
timate them from training data. To avoid dimensionality
issues, it is often necessary to reduce x to a smaller vector
of statistics or features, z = T (x). The traditional feature-
based classifier is based on the PDF estimates of z under
each hypothesis:

arg mix p(zlH;) p(Hy). @

Because z needs to be sufficient for the entire problem, it
often must contain a large number of features. The two
fundamental problems in designing such a classifier are
(1) to obtain a low-dimensional feature vector with suf-
ficient information and (2) to obtain its joint PDF esti-
mate under each class hypothesis. PDF estimation above
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a dimension of about 5 is problematic [Sc092]. As a re-
sult, feature reduction is often needed [Dud73]. High-
dimensional PDF estimators can perform well as classi-
fiers if there exists good separability among the classes in
the high-dimensional space. Further performance improve-
ments are difficult without addressing the dimensionality
problem in a more direct manner.
Consider a set of class-specific feature vectors (FV):

z; = Tj(x), 1<j<M,

which do not need to be unique (we could have T; = T,
for some k£ # j). Criterion for selecting features is dis-
cussed below. The dimension of the class-specific FVs will
be equal to or lower than that of the common FV z. As-
sume that we have available estimates of the PDFs of each
FV under the corresponding hypothesis:

p(zj|H;) 1<j< M. (3)

We seek a way to re-write the classifier (1) in terms of the
PDFs of the class-specific features (3). To make fair likeli-
hood function (LF) comparisons, it is necessary to “project”

these PDFs back to the original data space.

2 Theoretical Results

We define the “projected” PDF as

sty & | FEEL ] sz oim),

where Hy ; is class-dependent null hypothesis that can be a
simplified case such as independent Gaussian or exponen-
tialty distributed noise. We will prove shortly that the func-
tions {(x|H;)} given in equation (4) are indeed PDFs and
furthermore they induce the corresponding PDF p(z;|H;)
on z;. We assume that for each j, the PDFs p(x|Hy ;) and
p(T;(x)|Ho,;) are known exactly and for all realizations of
x we have p(T;(x)|Hy ;) > 0.



Theorem 1 Let X be a range of possible realizations of x.
Let p, (x|Hp) be a PDF defined on X and Let p,(x|Hp) >
Oforallx € X. Let Z be the image of X under the trans-
formationz = T'(x). Let p,(z|Hy) be the PDF of z when x
is drawn from the PDF p,(x|Hp). Thus, p,(z|Ho) > 0 for
all z € Z. Let f.(z) be any PDF defined on Z. Then the
function defined by

Pz (x| Ho)
p:(T(x)|Ho)

is a PDF defined on X, thus it has unit area. Furthermore,
if x is drawn from the distribution f,(Xx) as defined in (5),
then the PDF of z will be f.(z). Proof: Let M,(y) be the
Joint moment generating function (MGF) of z. By definition,
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from which we conclude that the PDF of z is f.(z). The
above proof may be modified to show that f,(x) has area 1.
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The PDF f,(x) may be thought of as a PDF constructed on
X in such a way that z = T'(x) is the sufficient statistic
(SS) to distinguish f,(x) from p,(x|Hy). By the invariant
property of likelihood ratios for SSs, if z; = T;(x) is a
SS for H; vs. Hy and f,(z) — p(z|H;), then fy(x) —
p(x|Hj;). Applying this to the problem at hand, we have the
class-specific classifier

[ p(x|Ho,;)
(2|Ho,;)

Furthermore, see that if for each j, z; is a SS to distinguish
Hj from Hy ;, and p(z;|H;) — p(z;|H;), (6) becomes the
optimal MAP classier (1). This fact provides the theoret-
ical guide for feature selection. That is, look for features

arg max ] plz;|H) p(H;). (6
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which distinguish a given class from Ho ;. Or if T;( ) is
fixed, choose Hp ; so that T;(x) is approximately sufficient
for distinguishing H; from Hy ;. Advantages of the class-
specific method include:

e Reduced feature PDF dimension.
e Modular architecture.

o The class-specific method relies partially on p(z;|H;)
and partially on p(z;]Ho), which is known a priori.
The denominator has the effect of “assisting” that class
for which the data appears least likely under the null
hypothesis.

Note that in equation (6), the PDFs p(x|Hp ;) and

p(z;}Ho,;) must be accurately computed even if data sam-

ples are significantly different from the Ho ; hypothesis.
Therefore, accurate tail behavior is essential.

While Hy ; may be dependent on j, having a common
null hypothesis has some advantages. In this case, (6) be-

comes
p(zJ IH )
p(z;jHo)

which is in the form of a set of dedicated detectors. Hav-
ing a detector-like structure has obvious advantages at low
signal-to-noise ratio (SNR) because separate thresholds can
be set on each detector to reject samples instead of forcing
a decision.

(7)

arg max

i P(H;),

2.1 Theory extension: Hidden Markov Modeling

An M -state HMM involves a set of IV state occurrences
0 = {q[1]...q[N]} where 1 < ¢[t] < M. The sequence
0 is a realization of the Markov chain with state priors
{rj,7 = 1,2...M} and M x M state transition matrix

A = {a;}. The observations X = {x[1],x[2]...x[N]}
are realizations from a set of state PDF’s

p(x|H;), j=12...M,

where H; is the condition that state 7 is true. We assume
the observations are independent, thus

H p(x
The complete set of parameters defining the HMM are

A= [{m5} {ai)s {pC1Hqm)}]

where z;\; ;= 1, E;\il a;; = 1. The Baum-Welsh
algorithm maximizes the LF over A [Jua85]. The LF is writ-

XIO |Hq[t



ten as [Rab89]

p(XN) = Zﬁq{l]ﬁ(x[l]lHq[l])
o N ®
1 @ain-11qmm) B[R] Hypn))
n=2

where the summation of @ is over all possible state se-
quences of length N. To address the dimensionality is-
sue, most implementations reduce the observations to a FV
Z = {z[1],2[2]...2[N]}, where z[t] = T (x[t]). Instead, if
we appy (4) with common H,

1 2 X;;\) _ ~ f’(zq 1 [1“Hq[1])
LzA = p’z——%qﬂo> =2 faltl | g,y 1TH0)
q[1]
N

11 [aq[n—uq[n] P[] Hygn) )] :
1 P(2Zgfn) [l Ho)

)
A variation of the Baum-Welsh algorithm has been de-
rived for estimation of the parameters of the feature
PDFs {f(z;|H;)} by modelling them as Gaussian mixtures
[Bag00]. The result is an HMM with state-dependent fea-
tures. Because each state can have a different FV, it is possi-
ble to use special processing to take advantage of the special
temporal or frequency-domain character of each state. This
algorithm has been tested on simulated data and has show
superior performance in comparison to the standard HMM.
Part of this improvement is due a self-initialization effect.
This effect is due to the dominant role of the denominator
term p(z;|Hp), which is known in advance.

2.2 Computer Simulation

A computer experiment designed using synthetic sig--
nals with known sufficient statistics was conducted to ver-
ify (7). The results are published in a recent paper [Bag99].
The experiment featured three synthetic classes, each with
a one-dimensional statistic. The performance of the class-
specific classifier using one-dimensional PDF estimates was
compared with the classifier constructed using the three-
dimensional common FV composed of the three class-
specific features. Since both classifiers used the same fea-
tures and PDF estimation method (Gaussian mixtures), the
performance comparison compared only the classifier archi-
tectures. The classification performance is plotted in Figure

1 and shows that more than a factor of 10 fewer training
samples are required by the class-specific classifier for the
same level of performance.

Class-Specific

3-dimensional
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L
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) L
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Figure 1. Comparison of class-specific and traditional
classifier showing probability of correct classification (Pec)
as a function of the number of training samples from each
class. Each estimate of P, is an average of 10 independent
trials using 500 testing samples from each class in each trial.

3 Applications

3.1 Time-series (Speech) Analysis

The class-specific approach lends itself well to opti-
mal time-series segmentation. Let the length-T' time-
series be divided into K segments with ending times 7 =
[ti,t2...tx—1]. Within segment k, we assume the data’
is a realization of model my. Let g = [mq,ma...mk],
1 < my < M. Determination of 7 and x may be formu-
lated as a maximum likelihood problem. If we assume that

for a fixed u, T, the K segments are independent,

K
p(xlp, ) = [T pleltn-1 + 1], 2[te]|Hm,), (10)
k=1

where to = 0, and txg = T. The maximization of this
quantity may be written as

%%)_(p(xm,r) = max {mﬁx p(x|te, T)} . an

The inner maximization may be performed independently
on each segment. Then, the problem may be solved with-
out exhaustive search using dynamic programming. For
each time ¢, the total log-likelihood of the best segmentation
which ends at time ¢ may be calculated recursively. Aside
from the computational aspects, the main difficulty of im-
plementing (11) is the necessity to know the LFs p(x|H;).
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Thus, they are often limited to one model whose parame-
ters are allowed to change from segment to segment. An
example is the segmentation of a DFT into constant-power
segments [Ken96]. In contrast, the class-specific method al-
lows likelihood comparisons of competing models with dif-
ferent structure based only on their sufficient statistics via

(4). Let
A
Zj[tl,tz] =T (.’ﬂ[tl], PN
Applying (4) with a common Hy,

, z[ta]).

p zmk 1+tk lvtk]lek)
P(Zm, [1 + th— 1,tk]|H0)

p(x|p, T)
p(x|Hp)

(12)

Below, we explain the steps necessary for implementation
of (12) and describe the specific choices we have made rel-
ative to the segmentation of speech data.

1. Selection of the Hy hypothesis. For speech, it is useful
to use N (0, 1) independent Gaussian noise.

. Selection of sufficient statistics to differentiate each
model from Hy. The two main models in speech are
unvoiced (H;) and voiced (H») processes. We se-
lected as approximate sufficient statistics for H; the
first seven autocorrelation function (ACF) lags z; =
rb, where rf [ro...rg]. For Ha, we used zo =
[r®,rp,ip] Where rp, i, are the value and lag index if
the highest ACF peak in the range of human pitch.

. Determination of the denominator PDFs p(z;|Hy).
For a set of unweighted DFT-derived ACF estimates
obtained from independent Gaussian noise, the exact
joint moment generating function (MGF) may be de-
termined, however a closed form expression for the
joint PDF can not be found. Through application of
the saddlepoint approximation or tilted Edgeworth ex-
pansion [BN89], accurate PDF approximations valid
in the distant tails may be obtained [Kay]. For voiced
speech, the introduction of the feature i, requires using
the PDF factorization

p(r®, rplip, Ho) p(ip|Ho), (13)

where p(ip|Ho) is approximated as a uniform distribu-
tion.

p(rs,rp,ileo) =

. Determination of appropriate numerator PDFs
‘p(z;|H;). These PDF may be obtained by PDF
estimation using labeled training data, or may be con-
structed using prior knowledge. For voiced speech,
the factorization (13) also applies under H5 and we as-
sume p(ip|Ho) is uniform over the human pitch range.
Often, it is useful to work with an alternative feature
set with well-behaved statistics obtained by invertible
transformation of z;. For H;, we have found it useful

766

to work with the alternative feature set z; = [p, k6],
where p = log(rg), and x® [£t,...,ke], and
k; = log((1 — K;)/(1 + K;)), where K;, are the
6-th order reflection coefficients (RCs). The PDF
p(z1|H1) may be obtained from p(z;|H1) using a
change of variables and the Jacobian of the transfor-
mation. We have found that the components of z}
are approximately Gaussian and independent under
H,. Appropriate means and variances were obtained
by observing typical data. For Hy, we have found it
useful to work with z, = [p, &%, pp, ip), where k8 and
p are similarly defined and p, = logrp.

An example of a segmented time-series is shown in Fig-
ure 2. This example was obtained by fitting voiced and
un-voiced speech models to the segments. Good quality

speech has been re-synthesized from the features from the
segments obtained in this way.

Figure 2. Example of optimal speech segmentation. Un-
voiced segments are shown with finer dotted lines. Spoken
word is german “heut”, pronounced “hoit”. The length of
the voiced speech segments in the final solution are approxi-
mately equal to a multiple of the pitch period. This provides
the best “fit” to the model which used unweighted DFT pro-
cessing.

3.2 Image Recognition

The class-specific method may also be applied to im-
age processing. To realize a benefit by direct application
of equation (4), there should exist a low-dimensional FV
for each object class which is nearly sufficient to distin-
guish the given object from Hj (Gaussian or exponentially
distributed independent noise on the image plane). Unfor-
tunately, most object recognition problems are concerned
with objects which are similar or share the same features.
A better approach is to represent each object class as a col-
lection of image primitives. These primitives can be then
represented by different FVs. The recognition of the ob-
ject classes can be accomplished by statistically modelling



the spatial relationships among the image primitives. To
test this concept, a simplified shape-recognition experiment
was conducted. Figure 3 shows the original camera image
which contains circles, squares, and a pentagon.

Figure 3. Original image (245 wide by 242
high).

The image of 245-by-242 pixels was pre-processed as
follows. The image data is defined as {z;;, 1 < i <
N, 1 < j < M}. Let N(i,7) be circular neighborhood
of 16 pixels radius around pixel (i,j):

N(i,5) £ (n,m) : /(n —i)2 + (m — j) < 16.

We define u(7, j) and o (i, j) as the sample mean and stan-
dard deviation of the data in neighborhood N (2, j). We then
define the normalized neighborhood data at pixel (3, j) as

X(i,5) £ {84,} : (n,m) € N(i,5),

where

G A Tnm = (i, J)
The idea is then to test X'(4, j) for each object primitive in
each orientation. An example of a primitive for a 90-degree
corner centered at pixel (4, j) with an orientation of ¢;=135
degrees is shown in Figure 4. Let there be L orientations
(we use 5-degree quantizations L = 72). Let

p(X (4, 7)|Ho)

Q,5,1,m
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Figure 4. Image primitive for a 90-degree corner centered
at pixel (¢, 7) with an orientation of ¢=135 degrees.

1 <1<, 1 < m < M, where M is the num-
ber of primitives. This quantity is the likelihood ratio test
at pixel (7, 7) between the hypothesis that primitive m is
present in orientation ¢ and hypothesis Hy. To apply the
class-specific method, we re-write this as

(23 j0,m|Hm, 01)

Q,5,l,m) =
(0,3, L,m) (Z4,5,0,m|Ho)

where z; ;1 is an approximate sufficient statistic for this
binary test. Note that normalizing X (i, j) makes it easier
to find approximate sufficient statistics to distinguish from
zero-mean Gaussian noise of unit variance.

To illustrate the selection of approximate sufficient
statistics, we consider a one-dimensional example. Con-
sider a length-N time-series x = [21,2z2...zn]. Let hy-
pothesis Hj be defined as

Tr=a1+n, 1<t<b
Hy :
Tt

az+ngy, b>t< N,

where a1, a2 are two unknown constants. We define Hy as
independent NV (0, 1) Gaussian noise. A good FV s the sums
of the samples in the two regions:

b
Zip = Z Ty, Zop =
t=1

Thus, we have

p(lela b) ~ p(zl,b, z?,blHl, b)
p(x|Ho) ~ p(z1,,22,5|Ho)
Under Ho, z, 5 and z, are mutually independent. Both

are Gaussian with zero mean, while z; ; has variance b, and
Z1, has variance N — b. Clearly ,

N
2 =

t=b+1

14

log p(21,5, 22,5/ Ho) = —0.5log(27b) — 3573,
2

—0.5log(27(N — b)) — mzu,.



The numerator PDF in (14) needs to be defined. If we have 4 Conclusions
no prior knowledge about a3, a2, we may assume uniform

distributions or may ignore the prior distribution altogether. A new general method of pattern recognition is pro-
It has been experimentally verified that the numerator has posed. This method allows class-specific feature vectors
minimal effect on the test. The classification decision may to be used in an optimal classifier framework. The new
be made based only on the denominator, i.e. how unlikely method does not suffer from the same dimensionality is-
the data is under Hy. sues as the traditional classifier because optimality of the
To extend the above example to the 90-degree corner method only requires feature vectors to be sufficient to dis-
primitive in Figure 4, we compute the sum of the samples tinguish the given class from a common (null) hypothesis.
in regions A and B. We then apply a similar argument to ar- The method is based on a new theorem which permits “pro-
rive at a formula for the joint distribution of the two region jecting” the feature vector PDFs back to the original data
sums. We have created similar models for various corner space. The method is showing promise in three applica-
widths, straight edges, and curved edges. tions: HMM modelling, time-series (speech) analysis, and
Depending on the application, the orientation informa- image recognition.
tion may or may not be important. If it is not important, one
may reduce the data by maximizing over the orientation ¢;: References
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